翻訳と辞書
Words near each other
・ Hausberg
・ Hausberg (Taunus)
・ Hausberg Gondola Lift
・ Hausbrunn
・ Hauschild's Hall
・ Hauschka
・ Hauschka (disambiguation)
・ Hausdalshorga
・ Hausdorff
・ Hausdorff Center for Mathematics
・ Hausdorff completion
・ Hausdorff density
・ Hausdorff dimension
・ Hausdorff distance
・ Hausdorff gap
Hausdorff maximal principle
・ Hausdorff measure
・ Hausdorff moment problem
・ Hausdorff paradox
・ Hausdorff space
・ Hausdorff–Young inequality
・ Hause
・ Hause House
・ Hausei River
・ Hausel
・ Hausen
・ Hausen (crater)
・ Hausen (Frankfurt am Main)
・ Hausen (Wied)
・ Hausen am Albis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hausdorff maximal principle : ウィキペディア英語版
Hausdorff maximal principle
In mathematics, the Hausdorff maximal principle is an alternate and earlier formulation of Zorn's lemma proved by Felix Hausdorff in 1914 (Moore 1982:168). It states that in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset.
The Hausdorff maximal principle is one of many statements equivalent to the axiom of choice over ZF (Zermelo–Fraenkel set theory without the axiom of choice). The principle is also called the Hausdorff maximality theorem or the Kuratowski lemma (Kelley 1955:33).
==Statement==

The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. Here a maximal totally ordered subset is one that, if enlarged in any way, does not remain totally ordered. The maximal set produced by the principle is not unique, in general; there may be many maximal totally ordered subsets containing a given totally ordered subset.
An equivalent form of the principle is that in every partially ordered set there exists a maximal totally ordered subset.
To prove that it follows from the original form, let ''A'' be a poset. Then \varnothing is a totally ordered subset of ''A'', hence there exists a maximal totally ordered subset containing \varnothing, in particular ''A'' contains a maximal totally ordered subset.
For the converse direction, let ''A'' be a partially ordered set and ''T'' a totally ordered subset of ''A''. Then
:\
is partially ordered by set inclusion \subseteq, therefore it contains a maximal totally ordered subset ''P''. Then the set M=\bigcup P satisfies the desired properties.
The proof that the Hausdorff maximal principle is equivalent to Zorn's lemma is very similar to this proof.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hausdorff maximal principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.